Institut F Ur I F Am Angewandte Mathematik Hierarchical Basis Preconditioners for Coupled Fem{bem Equations Hierarchcal Basis Preconditioners for Coupled Fem{bem Equations

نویسنده

  • S. A. Funken
چکیده

The purpose of this paper is to present a nearly optimal preconditioned iterative method to solve indeenite linear systems of equations arising from h-adaptive procedures for the symmetric coupling of Finite Elements and Boundary Elements. This solver is nearly optimal in the sense, that its convergence rate grows only logarithmically with the number of unknowns. The algorithm is based on the conjugate residual method with block-diagonal pre-conditioning, where no Schur complement construction is required. This method uses diierent hierarchical basis preconditioners for the positive semi{deenite FEM block belonging to an interior Neumann problem and the negative deenite boundary element block belonging to the single layer potential. The eeciency of the hierarchical basis solvers is underlined by a numerical experiment showing fast convergence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Basis Preconditioners for Coupled Fem{bem Equations

SUMMARY The purpose of this paper is to present a nearly optimal preconditioned iterative method to solve indeenite linear systems of equations arising from h-adaptive procedures for the symmetric coupling of Finite Elements and Boundary Elements. This solver is nearly optimal in the sense, that its convergence rate grows only logarithmically with the number of unknowns. The algorithm is based ...

متن کامل

A coupled ES-FEM and FM-BEM for structural acoustic problems

In this paper, a coupled numerical method of the edge-based smoothed finite element (ES-FEM) with the fast multipole BEM (FM-BEM) is proposed to analyze structural acoustic problems. The vibrating structure is modeled using the so-called ES-FEM-DSG3 method, where the 3-node linear triangle plate elements based on the Reissner–Mindlin plate theory with the discrete shear gap (DSG) technique for ...

متن کامل

Fast multipole method applied to elastostatic BEM-FEM coupling

BEM-FEM coupling is desirable for three-dimensional problems involving specific features such as (i) large or unbounded media with linear constitutive properties, (ii) cracks, (iii) critical parts of complex geometry requiring accurate stress analyses. However, for cases with a BEM discretization involving a large number NBEM of degrees of freedom, setting up the BEM contribution to the coupled...

متن کامل

Analysis and Numerical Realization of Coupled Bem and Fem for Nonlinear Exterior Problems

The paper presents main results of the investigation of the coupled BEM and FEM applied to a nonlinear generally nonmonotone exterior boundary value problem. The problem consists of a nonlinear diier-ential equation considered in an annular bounded domain and the Laplace equation outside. These equations are equipped with boundary and transmission conditions. The problem is reformulated in a we...

متن کامل

für Mathematik in den Naturwissenschaften Leipzig Multi - Grid Methods for FEM and BEM Applications by Wolfgang

After discretisation of the partial differential equations from mechanics one usually obtains large systems of (non)linear equations. Their efficient solution requires the use of fast iterative methods. Multi-grid iterations are able to solve linear and nonlinear systems with a rather fast rate of convergence, provided the problem is of elliptic type. The contribution describes the basic constr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996